Gradient soft magnetic materials produced by additive manufacturing from non-magnetic powders

نویسندگان

چکیده

Additive manufacturing (AM) allows printing parts of complex geometries that cannot be produced by standard technologies. Besides, AM provides the possibility to create gradient materials with different structural and physical properties. We, for first time, printed soft magnetic from paramagnetic powders (316L steel Cu-12Al-2Fe (in wt.%) aluminium bronze)). The properties can adjusted during in-situ process. saturated magnetization value alloys reaches 49 emu g−1. changes in have been attributed formation BCC phase after mixing two FCC-dominated powders. Moreover, composition obtained predicted reasonable accuracy CALPHAD approach, thus providing efficient optimization performance. results provide new prospects alloys.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amorphous and Nanocrystalline Soft Magnetic Materials

Annealing of amorphous precursor alloys, with compositions (Fe,Co!88M7B4Cu1 ~M5Zr, Nb, Hf!, above their primary crystallization temperature results in the nanocrystallization of the ferromagnetic a8-FeCo phase. This work describes results of the characterization of these alloys, including morphological and chemical stability of the a8-FeCo phase, examination of alloy compositions, and developme...

متن کامل

Modeling Coercivity of Soft Magnetic Materials

Both physical and phenomenological models are necessary to obtain good descriptions of coercivity in soft magnetic materials. The former models give insight into the processes involved, while the latter models compute quickly. The differences between modeling soft and hard materials are the parameters sizes and the importance of eddy currents.

متن کامل

New Magnetic Materials Obtained by Ion-exchange Reactions from Non-magnetic Layered Perovskites

New layered magnetic materials, (MCl)Ca2Ta3O10 (M = Cu, Fe), have been prepared by ion-exchange reactions of non-magnetic perovskite derivatives, ACa2Ta3O10 (A = Rb, Li), in corresponding anhydrous molten salts. Powder x-ray diffraction patterns of the products are successfully indexed assuming tetragonal symmetry with cell dimensions a = 3.829 Å and c = 15.533 Å for Cu, and a = 3.822 Å and c =...

متن کامل

Fabrication of Soft Magnetic Fe-based Nanoalloy

The Fe-Ni-Sb-B amorphous alloy has been prepared by a solid-solid chemical reaction of ferric trichloride, nickel chloride, antimony chloride and potassium borohydride powders at room temperature. The inductive couple plasma study indicates that the resultant is composed of Fe 5.38 %, Ni 56.19 %, Sb 29.02 % and B 0.44 %. The XRD and thermal analysis show that the alloy is a non-strict sense amo...

متن کامل

Characterization of Metal Powders Used for Additive Manufacturing

Additive manufacturing (AM) techniques can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Materials Processing Technology

سال: 2022

ISSN: ['0924-0136', '1873-4774']

DOI: https://doi.org/10.1016/j.jmatprotec.2021.117393